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Abstract

Using a model in which agents compete to develop a potentially dangerous new

technology (AI), we study how changes in the pricing of factors of production (com-

putational resources) affect agents’ strategies, particularly their spending on safety

meant to reduce the danger from the new technology. In the model, agents split

spending between safety and performance, with safety determining the probability

of a “disaster” outcome, and performance determining the agents’ competitiveness

relative to their peers. For given parameterizations, we determine the theoretically

optimal spending strategies by numerically computing Nash equilibria. Using this

approach we find that (1) in symmetric scenarios, compute price increases are safety-

promoting if and only if the production of performance scales faster than the produc-

tion of safety; (2) the probability of a disaster can be made arbitrarily low by provid-

ing a sufficiently large subsidy to a single agent; (3) when agents differ in produc-

tivity, providing a subsidy to the more productive agent is often better for aggregate

safety than providing the same subsidy to other agent(s) (with some qualifications,

which we discuss); (4) when one agent is much more safety-conscious, in the sense of

believing that safety is more difficult to achieve, relative to his competitors, subsidiz-

ing that agent is typically better for aggregate safety than subsidizing its competitors;

however, subsidizing an agent that is only somewhat more safety-conscious often de-

creases safety. Thus, although subsidizing a much more safety-conscious, or produc-

tive, agent often improves safety as intuition suggests, subsidizing a somewhat more

safety-conscious or productive agent can often be harmful.
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1 Introduction

Rapid advances in artificial intelligence (AI) systems have led to concerns about the align-

ment of such systems with human values, especially as they come to influence decision-

making over increasingly significant aspects of human society (Christiano [2019], Yud-

kowsky [2013]). These risks are exacerbated by the strategic environment in which AI

developers find themselves. If misalignment risks are not fully internalized by develop-

ers, they may have an incentive to reduce safety investments in favor of investments in

performance to increase the chance of being the first to develop new technologies. Such a

safety-performance tradeoff (Trager et al. [2021]) is an example of what Christiano [2019]

calls a safety tax, or the marginal cost of deploying an AI system aligned with human

values over an equivalent but unaligned system.

As a result, within the AI governance field, the development of mechanisms to reduce

safety taxes is an active area of research. In the present work, we study the role of in-

put pricing in reducing the risk from such a competitive scenario. We develop a formal

model in which agents are racing to develop a novel AI system. Each agent purchases

an input, computation, which is allocated between investments in performance or safety.

agents’ relative levels of performance determine the probabilities of each agent winning

the race, while safety investments reduce the risk of a disaster that negatively impacts

all players. Formalizing the tradeoff between safety and performance in this way allows

us to study how agents respond to changes in the prices of factors of production, which

is a key contribution of this work; in the context of AI technology, our model allows us

to consider how changes in compute prices are likely to affect safety. We consider the
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problem of a principal who wants to increase equilibrium safety and is able to influence

compute pricing (or more generally, the price of some key production input) to that end.

We investigate how compute price changes for one or multiple agents affect equilibrium

safety.

We solve computationally for the Nash equilibrium levels of safety and performance

investments and derive four main results.

First, restricting the principal to set a single price for all agents, we show that safety is

increasing in compute price if and only if the elasticity of safety with respect to spending

on safety is greater than the elasticity of safety with respect to spending on performance.

In this case, increasing the input cost is beneficial for safety because agents will reduce

performance more than safety for a given increase in price. This result implies that safety

declines as the price of compute declines if the effort required to make systems safe in-

creases enough in the performance of the system.

Second, we allow the principal to set individual prices for agents. This might be ac-

complished, for example, by setting a single price for renting cloud compute and then of-

fering differential subsidies to firms.1 We find that arbitrarily high safety can be achieved

in equilibrium by providing a sufficient subsidy to a single agent. By giving one agent

a large enough advantage in the race, the subsidized agent can afford to both devote

sufficient resources to win the race and produce a high level of safety.

Third, if one agent is more efficient at producing performance, we find that the prin-

cipals should subsidize the more productive agent when the performance elasticity of

1This is a regular practice for providers of cloud compute. See, for example, OpenAI’s partnership with
Microsoft Azure or C3.ai’s partnership with Google Cloud.
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safety is high. When the elasticity is low – for instance, when increasing performance de-

creases the effort required to make a system safe – subsidizing the less productive agent

reduces the equilibrium difference in capabilities of the agents. In this case, the devel-

opers face little or no safety-performance tradeoff, and thus they continue to maintain

high levels of safety, even when they have similar levels of capabilities. In what is prob-

ably the more likely case, when the safety elasticity of performance is high (implying a

significant safety-performance tradeoff), providing subsidies to bring agents’ capabilities

closer together is not beneficial in this model because they are then incentivized to race

to the bottom by cutting corners on safety. In this latter case, a principal should instead

subsidize the more productive agent, increasing her probability of winning and allowing

her to choose a higher level of safety.

Fourth, we examine scenarios in which agents differ in their attitudes toward the risk

of a disaster. In particular, we find that, given some reasonable assumptions, when agents

have sufficiently different beliefs about the cost of achieving a given level of safety, pro-

viding a subsidy to an agent who believes safety to be costly to achieve is better for ag-

gregate safety than providing the same subsidy to an agent who believes safety to be rel-

atively easy to achieve. This matches the intuition that assisting safety-conscious agents

is better for safety than assisting their competitors; however, there are some cases under

which this intuition fails, so we also examine some of those cases. In particular, subsi-

dies for safety-conscious agents are not reliably safety-promoting when the differences in

safety-consciousness between them and their competitors are not large or if we use some

other definition of safety-consciousness.
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2 Risk and compute pricing

2.1 Mechanisms for reducing risk

Following the work by Armstrong et al. [2016], a growing body of literature has sought to

understand how the strategic environment in a technology race affects risk and uncover

mechanisms to reduce it. Factors that have been identified as being important to risk are

agents’ knowledge about capabilities (Emery-Xu et al. [2022], Armstrong et al. [2016]),

the capability gap between the leader and her competitors (Stafford and Trager [2022],

Stafford et al. [2021]), and the influence of safety on both development speed and the

probability of risk (Han et al. [2021]).

A variety of mechanisms have been proposed to reduce these risks. Han et al. [2021]

consider the conditions under which a government can use taxes to punish unsafe devel-

opment or subsidies to reward safe development, finding that both interventions reduce

risk under certain conditions but only taxes can lead to overregulation and a suboptimal

reduction in innovative output. This work assumes that AI development is proceeding

without international cooperation or competion. The global nature of contemporary AI

development, however, hinders the efficacy of government regulation, as countries may

have an incentive to underprovide regulation in order to outcompete their rivals. Other

scholars have, therefore, focused on mechanisms to which agents will voluntarily agree.

Drawing from the success of the Nuclear Non-Proliferation Treaty, Stafford and Trager

[2022] study the role of information sharing agreements in reducing risk, finding that if

agents are not too close in capability, the leader has an incentive to share some technology

with the laggard in return for the latter exiting the race. Emery-Xu et al. [2022] find that,
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except when the race is highly rivalrous and cutting corners on safety can approximately

guarantee that a agent wins the race, public revelation of capabilities reduces risk.

While all of these models assume that agents’ capabilities are exogenously endowed

by nature, AI developers must purchase research performance in competitive markets for

human capital, computational capital, and other inputs (Khan, Langenkamp and Flagg).

Thus, an input producer with market power has the ability to influence the safety choices

of agents. Governments, through industrial policy, and other agents, through technical

collaborations and subsidies, can influence equilibrium risk levels. Because our baseline

model analyzes a complete information scenario, we can allow the principal to implement

first-degree price discrimination and thus study the effects of the first-best pricing strat-

egy. However, even though the principal can observe the agents’ types, we still observe a

moral hazard constraint stemming from the dual-use nature of compute.

2.2 Compute scaling

Our present work simplifies the production process by focusing on a single input - com-

putation. Why? First, we do so to simplify the analysis and make the results easier to

interpret. We encourage future researchers to build on these results in considering other

inputs into production functions. Second, computational capital plays a key role in driv-

ing progress in deep learning, the most prominent AI paradigm, compared to other US

R&D sectors (Besiroglu et al. [2022]). Third, because physical capital is more accumulable

following a change in price than is labor, it is relatively easier for agents to respond to a

price change in computation than to a wage change for researchers.
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How, then, does computation translate into AI progress? We assume it takes the fol-

lowing power-law form:

p := BXβ
p (1)

where Xp is the amount of compute used to advance the performance of the system,

p is the level of performance and the other parameters are constants of the production

function. We use this functional form because experimental results have shown that neu-

ral network performance tends to scale in this way with respect to computation. (Jones

[2021], Henighan et al. [2020], Kaplan et al. [2020], Lepikhin et al. [2020], Hestness et al.

[2017]).2 Thompson et al. [2020] shows that, across a wide variety of machine learning

benchmarks, performance is highly dependent upon the level of computational inputs.3

We also assume safety research follows a similar scaling law. While there exists far less

research on how safety scales with computation, there exists evidence that safety outputs

scale with compute according to a power law on some AI safety benchmarks (Bai et al.

[2022], Askell et al. [2021]).

3 The model

There are n players, and each player i = 1, 2, . . . , n chooses, simultaneously, to purchase

some amount Xi of a factor of production (compute power), at a per-unit price r, and di-

2Fortuitously, by assuming a power-law relationship, we can consider our model a special case of the canon-
ical “ideas production function” in endogenous growth theory (Jones [1995], Romer [1990]), which takes
the form p ≡ Ȧ

A = Aν−1Kβ
p . With ν = 1, we recover our model.

3Hoffmann et al. [2022] show that other inputs, in particular the size of the training dataset, are also impor-
tant - scaling compute without scaling data is not efficient.
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vides it between creating performance and creating safety. Thus, Xi = Xs,i + Xp,i, where

Xs,i and Xp,i are the amounts of the factor of production used for safety and performance,

respectively. Safety (s) and performance (p) are produced according to the following pro-

duction functions:

si := AiX
αi
s,i p
−θi
i (2)

pi := BiX
βi
p,i (3)

Note that pi appears in equation (2) to reflect the idea that safety may become more expen-

sive as performance increases, corresponding to the case where θi > 0. αi is the compute

elasticity of safety, describing how well safety progress scales with additional compute

dedicated to safety. βi is the analogous parameter for performance research. Finally, θi

controls the degree of the safety-performance tradeoff. In particular, −θi is the elasticity

of safety with respect to performance (the pi-elasticity of si); when we let θi > 0, spending

on performance has a negative impact on safety. A high value of θi indicates that there is a

large safety tax, as there is a large cost to performance in investing in safe systems, while

a low or even negative value of θi indicates that the safety tax is small or nonexistent. This

might be the case when only safe systems perform well as evaluated by the market. For

example, consumers are unlikely to purchase autonomous vehicles that do not exhibit a

high degree of both performance and safety.4

4There is an interesting distinction between performance driven by investment, which we analyze here, and
performance level driven by implementation choices. An example of the latter is enabling a self-driving car
mode to operate only on highways or also on city streets. In such cases, we expect higher performance to
imply a higher cost for an equivalent levels of safety - a safety tax. See Trager et al. [2021].
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3.1 Payoffs and players’ objectives

Players (agents) compete in a contest, where the probability that player i wins is defined

as the simple contest success function

qi :=
pi

∑n
j=1 pj

. (4)

At the same time, players’ realized levels of safety aggregate to produce some proba-

bility that a disaster occurs (discussed more in section 3.2); we define σi as the probability

of a safe outcome (no disaster), given that player i wins the contest. If player i wins the

contest, and none of the players cause a disaster, player i gets a normalized payoff of 1.

Players that do not win receive a payoff of 0. If there is a disaster, none of the players get

a payoff for winning the contest; instead, each player pays a disaster cost di.

Putting this all together, player i’s expected net payoff is

ui := σiqi −
(

1−∑
j

σjqj

)
di − r(Xs,i + Xp,i). (5)

3.2 Disaster risk aggregation

The players’ realized level of safety determines the probability that a disaster occurs.

Here, we focus on two different ways of aggregating player safety choices to determine

that probability.
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3.2.1 Independent (multiplicative) disaster risks

In our base case, each player has some independent probability of causing a disaster; si

represents the odds that player i does not cause a disaster. Thus, si/(1 + si) is the proba-

bility that player i does not cause a disaster, and

σ :=
n

∏
j=1

sj

1 + sj
(6)

is the probability that none of the players cause a disaster. (We refer to σ as the “aggregate

safety.”) Note that this probability is the same regardless of who wins the contest; i.e.,

σi = σ, and thus we can simplify equation (5) to

ui = σqi − (1− σ)di − r(Xs,i + Xp,i) (7)

in this case.

3.2.2 Disaster risk only from contest winner

As an alternate case, we can assume that instead of each player carrying some indepen-

dent risk of causing a disaster, only the winner of the contest can cause a disaster. That is,

we make the assumption that si/(1 + si) is the probability of a safe outcome, conditional

on player i being the contest winner:

σi =
si

1 + si
(8)
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The aggregate safety in this case (unconditional probability that no player causes a

disaster) is

σ =
n

∑
i=1

σiqi =
n

∑
i=1

(
si

1 + si

)
qi. (9)

3.3 Heterogeneous beliefs

Up to this point, we’ve assume that all players have the same (correct) beliefs about the

model parameters. Unless stated otherwise, this will be our default assumption, but we

can also consider cases where players disagree on those parameters’ values. In this case,

we assume that each player i’s objective is to maximize ui subject to their own beliefs

about the model parameters; we also assume that all players are accurately informed of

each other’s beliefs (i.e., higher-order beliefs are perfect).

In this paper, we will be particularly interested in heterogenous beliefs about the pa-

rameter A (the safety productivity factor). When players have different beliefs about A,

they have different beliefs about the cost of achieving a given level of safety: a player

that believes that A is higher believes safety is cheap and therefore that less investment

is required to reduce the risk of a disaster. Thus players’ beliefs about A can be used as

a measure of their safety-consciousness – we say that players who believe A to be low

(i.e. believe safety to be expensive) are safety-conscious, and conversely for players who

believe A to be high.
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3.4 Solution criterion

We look for pure-strategy Nash equilibria for this model.5 That is, we find solutions

where each player i chooses Xs,i, Xp,i such that ui is optimal, given the other players’

choices. Due to the intractability of finding a closed-form solution, we implement a com-

putational approach to solve for equilibrium values of Xs,i, Xp,i. A description of our

solver is presented in Appendix A.

4 Response of safety to changes in input cost

In this section, we analyze how the principal can use the input price r to affect the prob-

ability of a safe outcome. For simplicity, we analyze the case with two players and begin

by assuming the principal can only set a single price. The first two claims presented here

are true for both risk aggregation assumptions presented in section 3.2, while the later

claims are sensitive to that assumption.

Claim 1: When players are identical, the probability σ of a safe outcome in-

creases with the factor price r if and only if θ > α/β.

A typical scenario illustrating this claim is shown in Figure 1. In the figure, α = β = 0.5

so that safety and performance each scale with the square root of compute. Thus, safety

increases in the price of compute for θ > 1 and decreases for θ < 1.

5Although mixed-strategy equilibria or multiple pure-strategy equilibria may exist for a given parameteri-
zation of the model, we have found that this is rarely the case unless there is some discontinuity in payoffs
based on player strategies. One situation in which this may occur is if we choose extreme parameter values
that result in situations where players may sometimes prefer not to produce at all. However, studying such
scenarios is not the focus of this paper, since the version of the model we use here does not allow players to
enter or fully exit competition and therefore is likely to reflect these scenarios poorly. Extending our model
to allow for player entry/exit may be a worthwhile way to expand on this work.
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Figure 1: The effect of price changes on safety depends on the scaling of the safety-
performance tradeoff. Here, α = β = 0.5. Aggregate safety σ increases with r iff θ > 1 =
α/β.

Suppose that we start at some level of inputs, Xs and Xp, and scale both up by a factor

of c > 1. We have

s(cXs, cXp) = cα−θβ A
Bθ

Xα
s X−θβ

p = cα−θβs(Xs, Xp), (10)

meaning that this scaling-up of inputs results in increased safety if and only if α > θβ.

For α ≤ θβ, if we want to increase safety, we must increase Xs at a greater rate than we

increase Xp.

We can also see this by combining equations (2) and (3), giving us

s =
A
Bθ

Xα
s X−θβ

p , (11)
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meaning that the elasticity of safety with respect to Xp is −θβ. Recalling that α represents

the elasticity of safety with respect to Xs, we can see that the elasticity of safety with re-

spect to a uniform increase in Xs and Xp is α− θβ. Safety’s returns to scale are determined

by the sign of this quantity.

We can thus interpret Claim 1 as saying that σ increases with r if and only if safety has

negative returns to scale in all its inputs (i.e., if safety is decreases when all outputs are

scaled up uniformly). More loosely, we can think of this as saying that price increases are

safety-promoting when production of performance outpaces production of safety.

We now consider outcomes in which the principal can engage in first-degree price

discrimination and charge ri based on observed characteristics of the agents.

Claim 2: When d > 0, arbitrarily high probabilities of a safe outcome can

be achieved by giving a single player (and not that player’s competitors) a

sufficiently low factor price.

A typical scenario illustrating this claim is shown in Figure 2. Player 1’s price of com-

pute is held constant while player 2’s is allowed to vary. Moving from right to left, we see

that decreasing the price of compute at first decreases safety when θ is not too low. This

happens for essentially the same reasons discussed in relation to Claim 1. As player 2’s

price gets even lower, however, the probability of a safe outcome goes to 1.

Thus, in symmetric cases where players have the same factor price r, the relationship

between that price and safety is as stated in Claim 1. In general, giving a single player a

subsidy (lower r) is not necessarily safety-promoting, and in asymmetric cases, giving a

subsidy to different players can have different effects on safety. The intuition for Claim
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Figure 2: Probability of a safe outcome goes to 1 as a single player’s compute price goes
to 0. Aggregate safety σ is shown as player 2’s r varies and player 1’s r is held fixed at
r1 = 1. (Dashed line marks r1.) In all cases, probability of a safe outcome (σ) converges to
1 as r2 → 0.

2 is that, although small subsidies to a single player may not increase safety, if we give a

player enough of a subsidy that all other players become practically unable to compete,

then the subsidized player is able to take their focus off of performance and use their

inexpensive resources to achieve a high level of safety.6

The next claim examines the case where one player is more effective at converting

resources into performance than their competitor. In this case, whether risks come all

players, or only from the winner of the technology competition, becomes significant for

the findings.

Claim 3: Suppose that one player is more productive at producing perfor-

6An important caveat is that this is dependent on the assumption that only the potential reward for winning
is fixed, with players’ relative levels of performance determining who wins the contest but not the size
of the reward for winning. If performance has some intrinsic benefit (e.g., if we think that players value
creating advanced AI sooner, even in the absence of competition), then this claim will not be strictly true.
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mance (has a higher B) relative to their competitor(s), with players otherwise

identical.

(3.a) In the case of multiplicative risks, if θ is low, then giving this player a

reduced factor price is worse for aggregate safety than giving their com-

petitor(s) a reduced factor price; for sufficiently high θ, subsidizing the

more productive player is better.

(3.b) In the case where only the contest winner can cause a disaster, subsidizing

the more productive player is better for aggregate safety if and only if

θ > −1.

Figure 3 illustrates this claim for both risk assumptions. On the right of the figure,

where θ is high, subsidizing only the more productive player is better than subsidizing

either the less productive player or subsidizing both players, but not giving out a subsidy

is the best option of all. Note that the subsidy illustrated in the figure is not extremely

large; if it were large enough, Claim 2 dynamics would apply. In the middle of the figure,

where the safety-performance tradeoff parameter θ is high, but not too high, subsidizing

only the most productive player is the best option. On the left, where θ is low, things

are more complicated. The optimal policy depends on just how low θ is and how risk is

aggregated, among other factors.

Lowering the price of inputs for one player has both a direct effect in changing their

optimal portfolio of performance and safety investments and an indirect effect in altering

the strategic scenario. When θ is low, both players are willing to invest in safety. However,

giving a subsidy to the more productive player increases the capability gap between the
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Figure 3: Subsidies for more productive agents lead to higher safety when the safety-
performance tradeoff is moderately strong. Illustration of Claim 3, This figure shows
differences in aggregate safety for various subsidy schemes, where one player has B twice
as high as the other. Both the upper and lower plots use the same parameter values, with
the only change being the way in which risk is aggregated. In this and all subsequent
figures, the subsidized player pays half the per-unit cost that their competitor pays.
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players, forcing the less capable agent to cut corners on safety. Here, the strategic effect is

relatively important: a subsidy that increases the gap between the agents is less beneficial

than one that reduces it. On the other hand, when θ is high, both agents are reluctant to

invest highly in safety, so by increasing the capabilities gap between agents, we take some

competitive pressure off of the productive player, making them more willing to spend on

safety relative to performance. Subsidizing the less productive player is less beneficial

because the less productive player still has a strong incentive to cut corners on safety,

driven both by her low Bi and high θ.7

We now turn to an analysis of subsidizing more and less safety-conscious players.

Claim 4 examines the case where there is a large difference between how difficult the

players believe it is to achieve safe outcomes. Here again, whether risk derives from the

race winner, or from both competitors, influences the dynamics.

Claim 4: Suppose that only the contest winner can cause a disaster and that

players differ in their beliefs about the safety productivity factor A. Regardless

of all other parameter values, if the difference in players’ beliefs about A is

great enough (so one player believes A to be sufficiently large relative to the

other), it is better for aggregate safety to subsidize the player who believes A

to be lower. This is not true when disaster risk is aggregated multiplicatively.

Figure 4 shows an example of a scenario that illustrates this claim. In this scenario, we

have two players who are identical except for their beliefs about the A parameter: both

7It’s important to note that Claim 2 still holds here: given a large enough subsidy for either player, we
can achieve high aggregate safety. This claim is relevant when we cannot provide an arbitrarily generous
subsidy and want to decide whom (if anyone) to subsidize.
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Figure 4: Subsidies for safety-conscious agents increase safety if competitors are suffi-
ciently unconcerned about safety. Player 1 believes that A = 10, which is the true value,
while player 2 believes (incorrectly) that A = A′ > 10. Here, ∆σ, the difference in safety
for giving player 1 a subsidy rather than giving player 2 the same subsidy, is shown for a
range of values of A′ and various values of θ. We assume that only the contest winner can
cause a disaster. As asserted in Claim 4, we can see that for sufficiently high A′, ∆σ > 0
in all cases.
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players have the same A, but they disagree about the true value of this A, with player 1

believing that A = 10, and player 2 believing that A = A′, which we let vary along the

x-axis of the figure. On the y-axis, we measure the difference in aggregate safety from

giving a subsidy to player 1, relative to giving the same subsidy to player 2. We can

see that, as player 2’s belief about the ease of achieving a safe outcome, A′, increases, it

may be safer to subsidize player 2, but for very high values of A′, it is always better to

subsidize player 1. Intuitively, if we want to promote safety, we shouldn’t subsidize a

player who thinks that being safe is trivially easy (i.e., a player who believes A to be very

high).

This claim gives us some idea of when it may be safety-promoting to assist a safety-

conscious agent: if one agent thinks that being safe is trivial, it’s probably best to assist

that agent’s competitors; however, if agents are more similar in their attitudes toward

disaster risk, the question of whom (if anyone) to subsidize is more unclear.

We should note that this claim addresses only one notion of what it means to be safety-

conscious; namely, we say that an agent is safety-conscious if she believes A to be low

relative to her competitors. In Appendix C, we consider a different notion of safety-

consciousness based on the cost d that players face in the event of a disaster. Impor-

tantly, when we measure safety-consciousness based on players’ appraisals of the costs

of disaster, we find that, under many parameter values, it is better to subsidize the less

safety-conscious agent, as the safety-conscious agent will not compromise as much on

safety in order to compete on performance.

It is also worth noting that this claim deals with cases where all agents intrinsically

value performance, and value safety only insofar as it guarantees the returns to their
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performance. An agent who cares purely about safety would not be subject to the same

consideration.

5 Conclusion

In this paper, we develop and solve a simple baseline model for competitive AI devel-

opment to provide policy recommendations for third parties concerned about risks from

competition to develop a new technology. We demonstrate that the effect on safety of

lowering the price of inputs to AI developers depends on whether performance or safety

scales more rapidly with compute. From our model, we see that there are a number of

potential scenarios in which lowering the price of inputs leads to increased safety. The

first case is when safety scales more rapidly with increases in safety research than with

reductions in performance research. For example, Bai et al. [2022] find that both help-

ful and harmless language models scale similarly with the number of parameters in the

model.8 The second case is if the principal is able to price discriminate, offering different

prices to each player: she can increase safety by giving one player a subsidy large enough

to discourage risky competition from that player’s competitors.

Next, we examine the case of heterogeneous agents. We find that, when there is a steep

safety-performance tradeoff, it is better to subsidize the agent who is more productive at

performance research. Finally, depending on how risk is aggregated between players, if

one player is much more safety-conscious than others, it is better for safety to subsidize

that player rather than to subsidize any of her competitors.

8Though this is not compute scaling, the two are positively correlated (see e.g. Sevilla et al. [2022]).
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Although subsidizing a much more safety-conscious, or productive, agent often im-

proves safety as intuition suggests, subsidizing a somewhat more safety-conscious or pro-

ductive agent can often be harmful. Very large subsidies to one agent are beneficial when

smaller subsidies are not. We should not allow intuitions derived from extreme cases to

govern considerations of more moderate interventions and cases.

We hope that this model provides a foundation that can be built on in future work.

One promising line of research would be to explore ways the principal could contract

with agents to incentivize them to commit to a certain level of safety in return for a com-

pute discount, potentially altering the range of scenarios over which agents would agree

to reduce competition in exchange for resources (Stafford and Trager [2022]). A second

line of research might examine the role of information in optimal compute provision,

studying the cases in which sharing productivity-enhancing insights between agents is

safety-promoting, and understanding better the welfare loss that results if agents are able

to conceal their true preferences from the principal. Finally, one could adapt the model

presented here to allow for explicit consideration of agents’ strategies over multiple time

periods, which could enable us to better model accrual of technology (via investment or

information diffusion) and more faithfully represent general racing dynamics over time.
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Appendix

A Description of the numerical solver

The numerical solver works by iterating on players’ best responses to each other’s strate-

gies. Assuming that we have specified ui for each player i, we propose some strategy

X(0)
s,i , X(0)

p,i for each i and proceed iteratively:

On each iteration t, we update each X(t)
s,i , X(t)

p,i to the values that maximize ui given the

other players’ strategies from the previous iteration:

X(t)
s,i , X(t)

p,i = arg max
Xs,i,Xp,i

{
ui(Xs, Xp)

}
(12)

s.t. Xs,−i, Xp,−i = X(t−1)
s,−i , X(t−1)

p,−i

We continue iterating until the proposed strategies stop changing, within some error

threshold, between iterations. Assuming a negligible error threshold, the strategies we

end with will be a Nash equilibrium, since by construction no player has an incentive to

change their strategy. Although the iteration is not guaranteed to converge, this method

works quite well in practice.

The code used to represent and numerically solve the model (with the above-described

algorithm) is available on GitHub.
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B Procedure for numerical “proofs” of claims

Due to the complexity of our model, it is difficult to analytically prove more than trivial

claims about the model’s behavior. Therefore, we rely on the results of our numerical

solver to generate and verify the claims presented in this paper. The procedure we use

can be described as follows:

1. We start with a hypothesis H, which specifies that if parameters are selected from

some set ΘH, then a proposition P must hold.

2. We choose some finite subset Θ̂H ⊆ ΘH of test points. Ideally, this subset should

be representative of the entire relevant parameter space; in testing the claims, we

have selected reasonably exhaustive test points with a focus on intuitively likely

regions of the parameter space, though this is of course subject to computational

constraints and our judgments about which parts of the parameter space merit the

most scrutiny.

3. For each θ ∈ Θ̂H, we solve for the equilibria of the problem parameterized by θ, and

check that P holds.

4. If P holds for all θ ∈ Θ̂H, we accept H as a claim.

Because we verify claims by testing them at finitely many points, these claims are of

course not strict mathematical results but can be regarded as robust observations about

the model’s behavior.
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C Behavior when players differ in d

Suppose that one player believes that a disaster will be more costly (has a higher d) rela-

tive to their competitor(s), with players otherwise identical. It is difficult to describe the

circumstances under which a subsidy for one player is better for safety than the same

subsidy for that player’s competitor, but we can give some general rules here:

• In the case of multiplicative risks, if θ is low, giving this player a reduced factor

price is worse for aggregate safety than giving their competitor(s) a reduced factor

price; for higher θ, the situation is ambiguous, with subsidies for the player who

believes disasters to be more costly being better for aggregate safety only if some

combination of the following holds:

– A is sufficiently high

– α is sufficiently low

– B is sufficiently low

– β is sufficiently high

– r (unsubsidized) is sufficiently high

• In the case where only the contest winner can cause a disaster, the above holds with

the caveat that a subsidy for the player who believes a disaster is more costly is also

better for aggregate safety (relative to a subsidy for their competitor) if θ is near zero

and α and β are sufficiently low and high, respectively.

Some scenarios illustrating this behavior are shown in Figures 5, 6, and 7. In Figure 5,

a subsidy for the player who faces a lower cost from disaster (lower d) is better for safety
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Figure 5: Example showing differences in aggregate safety for various subsidy schemes.
One player has d twice as high as the other (meaning they believe disasters to be more
costly than the other does). Here, subsidies for the low-d player result in higher safety
than subsidies for the high-d player at all levels of θ.

at all levels of θ; Figure 6 shows a different result, where a subsidy for the player with

higher d is better at high levels of θ. We assume that risk is aggregated multiplicatively in

both of these figures.

Figure 7 compares two scenarios with the same parameter assumptions but different

assumptions about risk aggregation. In this example, a subsidy for the player who faces

a lower cost from disaster (lower d) is better for safety at all levels of θ in the case of

multiplicative risk aggregation but only for modestly high values of θ in the case where

only the contest winner can cause a disaster.

What is driving this counterintuitive result? Intuitively, the risky player is more sus-

ceptible to competitive pressure to increase performance and will tend to respond to

price changes by favoring performance over safety more than the safety-conscious player
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Figure 6: Same as Figure 5, but with A 10x and B 0.5x values in Figure 5. Here, subsidies
for the player who believes disasters to be more costly (high d) result in higher safety for
sufficiently high θ.

would. Granting a subsidy to the safety-conscious agent causes the other agent to cut

corners on safety to remain competitive, and the safety-conscious agent may not be able

to sufficiently compensate for this by increasing their own safety spending. On the other

hand, subsidizing the risky player causes her to have an advantage in the race, reducing

the pressure to spend on performance and thus allowing for more spending on safety;

the unsubsidized safety-conscious player will not sacrifice as much on safety in order to

compete. The overall effect may be that subsidizing the risky agent is more beneficial.

31



Figure 7: Example comparing risk assumptions, where one player has d twice as high as
the other (meaning they believe disasters to be more costly that the other does). Parameter
values used are the same as Figure 5.
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