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Abstract
A formal model reveals how the information environment affects international races to
implement a powerful, dangerous new military technology, which may cause a “di-
saster” affecting all states. States implementing the technology face a tradeoff between
the safety of the technology and performance in the race. States face unknown, private,
and public information about capabilities. More decisive races, in which small per-
formance leads produce larger probabilities of victory, are usually more dangerous. In
addition, revealing information about rivals’ capabilities has two opposing effects on
risk: states discover either that they are far apart in capability and compete less or that
they are close in capability and drastically reduce safety to win. Therefore, the public
information scenario is less risky than the private information scenario except under
high decisiveness. Finally, regardless of information, the larger the eventual loser’s
impact on safety relative to the eventual winner’s, the more dangerous is the race.

Keywords
game theory, dyadic conflict, international security, military power, technology race,
global catastrophic risk

1Department of Economics, UCLA, Los Angeles, CA, USA
2Uber, San Francisco, CA, USA
3Department of Political Science, UCLA, Los Angeles, CA, USA
4Blavatnik School of Government, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road,
United Kingdom

Corresponding Author:
Nicholas Emery-Xu, Department of Economics, UCLA, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
Email: niemery@g.ucla.edu

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/00220027231214996
https://journals.sagepub.com/home/jcr
https://orcid.org/0000-0003-3650-9717
mailto:niemery@g.ucla.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00220027231214996&domain=pdf&date_stamp=2023-11-17


Introduction

Uncertainty is central to the study of arms races in the field of international relations. It
underpins analyses of when arms races lead to conflict (Jervis 1976; Kydd 1997;
Schelling 1980) and studies of the potential of treaties and other forms of international
cooperation (Kydd and Straus 2013). In a world characterized by anarchy, it is likely the
information environment will play a key role in determining the impact of emerging
technologies and the competitions to develop them. We study the role of incomplete
information in a setting that has been largely neglected in the international relations
literature: races for powerful new technologies. Some scholars posit that races for such
technologies may become a key feature of international politics in the coming decades,
as states compete to be the first to develop new technologies such as advanced artificial
intelligence (AI) or nanotechnology that could give them a sudden, significant increase
in capability over other states.

Such races have important differences from competitions to build larger numbers of
existing armaments.1 An important feature of these races is that they are associated with
different kinds of risk. Sometimes this risk is an exogenous feature of the international
system that is exacerbated by an arms race. If a state’s technological development has
the potential to cause a relative power shift, its rivals may attack to prevent such
development (Fearon 1995). In other cases, which we focus on in the present work, the
risk of negative externalities is inherent to the development and implementation process
itself. For example, biological weapons development can produce pathogens that affect
a broad range of actors beyond those involved in development. In April 1982, a re-
search lab in the Soviet biological weapons program produced an anthrax outbreak in
the city of Sverdlovsk that killed over 100 people. Likewise, genetic sequencing of the
virus that caused the 1977–1978 influenza epidemic reveals that the virus seems likely
to have come from a research laboratory (Rozo and Gronvall 2015). Biological
weapons use has a relatively high probability of infecting the user, an argument put
forth about why there have been relatively few uses of such weapons despite the
weakness of the provisions of the Biological Weapons Convention (Ord 2020). Indeed,
some scholars posit that substantial global risks many result from such technology races
(Cave and ÓhÉigeartaigh 2018; Stern 2002). Because of these risks, actors face an
inherent safety-performance tradeoff, in which they must choose the optimal allocation
of resources between advancing the performance level of a technology, thereby in-
creasing the probability of winning the race, and investing in the safety of the tech-
nology, which lowers the risk of disaster (Trager et al. 2021). Such allocations are
determined by the strategic contexts in which the actors find themselves. Actors’
information about their rivals’ capability interacts with this tradeoff in a number of
ways. Overestimation of a rival’s technological capability may lead an actor to
overinvest in capability, increasing risk relative to the complete information scenario
(Stafford et al. 2021). In other cases, actors may learn that they are far behind in the race
and choose to cede the prize to their opponent, lowering risk (Bimpikis et al. 2019).
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Some of these dynamics are illustrated in the race for the first nuclear bomb during
World War II when physicists involved in the Manhattan Project expressed concerns
over the safety-performance tradeoff. Edward Teller feared that a nuclear fusion re-
action could ignite the atmosphere, ending life on Earth. He privately urged the U.S.
government to delay development so that additional calculations and tests could be
performed. Though the team was able to show that these fears were improbable, Teller
and his colleagues remained worried until after the Trinity test was conducted. Part of
the reason why history favored development over safety is the U.S. government’s
uncertainty over the level of progress of Germany’s development of nuclear weapons.
Albert Einstein, for example, would later write to US President Franklin Roosevelt,
“Had I known that the Germans would not succeed in developing an atomic bomb, I
would have done nothing for the bomb.” (Newsweek 1947).2

A number of scholars believe that the development of advanced forms of artificial
intelligence will exhibit similar strategic dynamics (Russell 2019; Yudkowsky 2011).
Indeed, AI has already begun to shape international and domestic politics in profound
ways, expanding the use of fully automated drones (Horowitz 2018) and heightening
domestic surveillance in authoritarian regimes (Beraja et al. 2023). And progress in the
field is increasing rapidly. On average, experts in the field believe there is a 50 percent
chance of developing an AI that surpasses human performance on all job tasks by 2060
(Zhang et al. 2022). Such advanced AI systems may carry enormous benefits to states,
but they all produce distinct risks, ranging from AI outputs that are misaligned with
human preferences or control of powerful AI systems by expansionary states or other
dangerous actors (Brundage et al. 2018; Russell 2019).3 Though AI development is
currently led by scientists a strong preference for open sharing of knowledge, as the
rewards from advanced AI become more apparent, as with nuclear weapons, states may
have incentives to increase the pace and secrecy of development with as-yet-unknown
effects on risk.

Likewise, the importance of such a tradeoff is likely to become increasingly im-
portant in biological research for both military and civilian use. The field of synthetic
biology has an explicit goal of reducing the level of tacit knowledge necessary to
produce new biological agents (Mukunda et al. 2009), which could increase the
technology’s accessibility to state and nonstate actors. The proliferation of terrorist
actors concurrent with the publication of gene sequencing for Ebola, influenza, and
other deadly pathogens on the Internet led to an increased focus on preventing pro-
liferation (Stern 2002). Likewise, the cost of genome sequencing, and thus of de-
veloping deadly biological agents, has been halving faster than every 2 years, making
the development of weaponized agents accessible to an ever-increasing set of actors
(Mukunda et al. 2009). Finally, accidental laboratory leaks can also cause deadly
outbreaks, exacerbating risk (Lipsitch and Inglesby 2014; Rozo and Gronvall 2015).
Such a rapidly evolving threat has forced political actors to consider a safety-
performance tradeoff for biological research (Stern 2002).

We develop a formal model that captures many of these strategic considerations. We
solve for the perfect Bayesian equilibria under three scenarios regarding information
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about capabilities: unknown, private, and public. First, we show that more decisive
races, in which small leads in performance produce larger probabilities of victory in the
race, are weakly more dangerous under most parameter values. Second, we show that
revealing information about the capabilities of rivals has two opposing effects on
disaster risk. The benefit is that actors may discover that they are sufficiently far apart in
capability and will compete less. The cost is that actors may discover they are close in
capability and thus engage in a dangerous race to the bottom, cutting corners on safety
to win the race. As a result, the public information scenario is more dangerous than the
private information scenario only under high decisiveness. As decisiveness decreases,
the first effect dominates the second, so that public knowledge of capabilities is welfare-
improving. Third, in all information scenarios, we find that the larger the impact of the
eventual loser on safety, relative to the eventual winner, the more dangerous is the race
due to a public-good effect.

Our work is organized as follows. the next section provides an overview of the
interaction among information, investments, and risk in the arms race literature, finding
that existing models fail to fully capture the strategic situation in which states find
themselves when developing risky new technologies. The section after describes our
choice of model primitives, grounded in existing cases of technology races. The fourth
section presents the base model, and the fifth describes the forces that generate risk
under each information scenario and illustrates these forces in a series of historical
examples. In the sixth section, we consider the role of safety sharing, enmity, and
regime type on risk. The final section concludes.

Information, Arms Racing, and Risk

An extensive literature exists on how information affects the risk of conflict in arms
races. The sorts of incomplete information that drive the risk of conflict appears to fall
into three broad categories (Ramsay 2017). The majority of the literature has focused on
uncertainty over actors’ costs of conflict (Kydd 1997). A second strand of literature
focuses on psychological factors influencing states’ risk-taking, invoking such causes
as states’ mutual tendency to be either overly optimistic about their own chances of
winning a conflict (Wittman 2009) or overly pessimistic about the intent of a rival’s
arms buildup (Jervis 1976). Finally, a third strand of literature, in which our work is
situated, focuses on the role of uncertainty about the capabilities of rivals. Across
literatures, the existence of a baseline bargaining model of conflict (Fearon 1995) has
given scholars a framework with which to analyze the role of uncertainty in war. This
has led to a number of robust analytical results, including that weaker types are less
likely to initiate conflict (Powell 2004), that a higher variance over the distribution of
types increases risk (Reed 2003; Wittman 2009), and that perfectly peaceful equilibria
only obtain when the joint cost of war is large enough (Fey and Ramsay 2011).

Existing literature has studied the role of information in quantitative arms races,
those for which states accumulate arms but the level of technology remains fixed.4

Kydd, (2000); Meirowitz and Sartori, (2008) focus on situations in which states are able
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to arm in private before bargaining. Kydd shows that states perceived as having
relatively low capabilities tend to arm in private in order to secure better bargaining
outcomes. Meirowitz and Sartori (2008) endogenize the decision to disclose capa-
bilities, arguing that states prefer to keep their capabilities private to secure better
bargaining outcomes, even when the risk of war increases. A second class of models
studies an asymmetric arms race, when a weaker state is seeking to acquire newmilitary
capabilities to lower the gap with strong states. Bas and Coe (2016) study a dynamic
model in which a strong state obtains a noisy signal about an arming state’s level of
capabilities, finding that the estimated time to completion of the arming is more
predictive of preventative war than the mere existence of arming.5

The empirical evidence on the influence of arms races on war is mixed. Early work
by Richardson (1960); Wallace, (1979, 1982) finds a positive correlation between rapid
accumulation of arms and the outbreak of war. Later work has qualified these results,
finding only some types of arms races are correlated with an increased outbreak of war.
Horn (1987) finds that brief periods of rapid arming do not heighten the risk of war,
while Sample (1997) finds that, while most arms races are associated with an increased
probability of conflict, those involving nuclear weapons buildups or those between
bitter rivals are not.

In contrast to the study of arms races and war, the study of qualitative arms races has
been hindered by the lack of a standard model for thinking about such competitions. As
such, existing formalizations of arms races we argue are poor descriptors of the strategic
environment in which states find themselves. First, the rewards to qualitative races may
be inordinately large, perhaps leading to rapid, discontinuous power shifts between a
state that develops a new technology and her geopolitical rivals. This view is epito-
mized by President Vladimir Putin of Russia, who said with regards to military uses of
AI: “the one who becomes the leader in this sphere will be the ruler of the world.” (AP
2017). As such, it makes little sense to view the outcome of the race in terms of
bargaining over shares of a pie (Fearon 1995). Second, the risks resulting from such
races may be quite different along a number of dimensions compared to quantitative
arms races, whose main risks are war and an inefficient allocation of economic re-
sources.6 Instead, risks from technology races may be both much larger in consequence
and have a far smaller probability of realization than risks from quantitative races (Stern
2002). However, states have a far greater control over the level of risk than they do over
the occurrence of war.7 For example, biological research can continue, albeit at a slower
pace, even if a state were to prohibit the publication of most biological research and
keep risk to a minimum.8 This allows states to control the tradeoff between risks from
speeding up development and the risk of a geopolitical rival developing the technology
first.

In this work, we develop a model that explicitly takes into account such features.
This model contributes to a small but growing literature on qualitative arms races.
Naude and Dimitri (2020) study an evolutionary model of a qualitative race within one
country, showing that taxing technological development and using public procurement
can incentivize cooperation and reduce risk. Stafford et al. (2021) employ a dynamic
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model to study the effects of a capabilities gap on risks in qualitative races, finding that
risk is higher for a larger gap in players’ performance levels when enmity is high but is
lower when enmity is low. They show that there exists a safety-performance tradeoff in
which investments in safety and investments in research progress are complementary
goods. Both of these models assume that research capability levels are common
knowledge, an assumption that seems unlikely in real-world races. Both the Manhattan
Project and the Soviet bioweapons program, for example, were carried out under
conditions of high secrecy. While the model in Armstrong et al. (2016) compares risk in
a technology race under public and private knowledge of capabilities, they make the
strong assumption that states have perfect knowledge of the R&D process such that the
state with the highest performance wins the contest for certain. In contrast, we gen-
eralize their model to take into account both the role of information about research
progress and the capabilities of rivals. It is to this uncertainty that we now turn.

Model Primitives

In our model, two states i 2 {1, 2} compete to build a significant military technology,
such as a new biological weapon or powerful AI system. Nature endows each state with
a research capability level xi, which we can think of as determined exogenously by
existing attributes such as GDP and military expenditures.9 Depending on the in-
formation scenario, explained in detail below, xi may be unknown, privately known, or
publicly known. Each state’s capability is drawn independently from a commonly-
known distribution G(xi), which we assume for simplicity and without much loss of
generality, is uniformly distributed on [0, μ]. Each state chooses a level of safety
investment si 2 [0, 1]. However, investing in safety research detracts from a state’s
performance in the race in a linear fashion. We denote a state’s net performance level as
ki = xi � si. If a state i wins the race, it then implements the technology and receives its
military benefits; with probability si, implementation is successful, and with probability
1� si, a disaster is incurred.

10 For now, we assume that only the winner has a chance to
implement the technology and thus contribute to the safety of the process, though later
we relax this assumption and allow both states to affect the risk of disaster. We
normalize the value of winning the race to 1 and the value of a disaster to 0. If i loses the
race, its rival j has a chance to implement the technology. We assume that the disaster
affects all states equally.11 However, if a rival wins the race and implementation is
successful, a state receives only an intermediate payoff (1 � η), where η 2 (0, 1]
represents enmity, or the opportunity cost of losing the race. In effect, then, we have the
following utility ordering for each state i:

E uiji implements½ �>E uij j implements½ � ≥E uijdisaster occurs½ �
where ui(.) is given by

E ui sið Þ½ � ¼ siPr i winsjki, kj
� �þ 1� ηð ÞsjPr j winsjki, kj

� �
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Finally, we assume that states’ performance levels ki translate into success in the race
according to a logistic contest success function (CSF):

Pr i winsjki, kj
� � ¼ emki

emki þ emkj

Though contest success functions have been commonly used to model war outcomes
(cf. Fearon 2018; Skaperdas 1998; Hirshleifer 1995), their use in a technology race
warrants discussion. First, the use of a CSF allows us to model the level of uncertainty
inherent in innovation. Even given a known performance level, research outcomes are
the result of an inherently random process that involves a certain amount of luck as
researchers seek to recombine existing knowledge in novel ways (Weitzman 1998).12

Even if another research team is lower in capabilities, they have a positive probability of
making the discovery first. Thus, it is common for economists to measure innovation
races between firms using a contest success function (Baye and Hoppe 2003). Second,
we choose the logistic CSF in particular because degree of difference in capabilities
matters for success. This appears to be an important feature in determining risks from
qualitative races. Both the Manhattan Project scientists and Soviet biologists stated that
the potential of their rival, Nazi Germany and the United States, respectively, to catch
up in the race was a driving factor encouraging them to favor performance over safety
(Ord 2022).13

An important focus of our paper is the decisiveness parameter in the CSF,m ≥ 0. This
determines the rate at which additional effort translates into success. At low values of
decisiveness, progress is highly uncertain, such that even a state with relatively low
capability may win the race due to “luck” or some other resource that is not accounted
for by x, but as m → ∞, the state with the highest value of k wins the race with
certainty.14 In our context,m is correlated with the level of uncertainty over the research
process.15 In cases whenm is low, mastering the steps necessary to build a technology is
likely to be difficult, requiring high levels of expertise or a search through a wide space
of ideas in order to find one that “works.” In other cases, m is high, representing a high
level of clarity about how research capabilities translate into success. This is likely to be
the case if a new technology is an iteration of an existing one. Summarizing the above
description, Figure 1 presents the structure of the game.

Base Model

To examine the risk that arises under different information structures, we begin by
characterizing the unique symmetric Bayesian Nash Equilibrium of the game under no
information, private information, and public information conditions. This will allow us
to calculate the expected risk of the race given the distribution of states’ capabilities
G(x).16
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No Information

We begin with the no information case. In this scenario, no state knows its own ca-
pability. This is distinct from the uncertainty that comes from decisiveness. With low
values of decisiveness, states may know their own performance level and can channel
their resources toward developing the technology, with uncertain results. Here, states
also have no information about their own capability. This is a more fundamental source
of uncertainty: does a state’s stock of resources even contribute to technological
progress at all? Realistically, then, the no information case represents a lower bound on
states’ knowledge, as in the real world states are likely to have at least an understanding
of how to build a novel technology. Because states have the same prior beliefs over the
type space, in the symmetric Nash equilibrium, each will choose the same strategy.
Here we derive the equilibrium safety level of each player as well as the expected
disaster risk over the distribution of states’ capabilities.

Proposition 1. In the case in which states do not know their capabilities, the unique

symmetric BNE strategy is given by s*˘ ¼ min
n
1, μ

2η½FðμÞ�Fð0Þ�
o
.

First, we note that the equilibrium outcome is written in terms of F(c), where Ci = Xi

+ Vi � Vj, Vi ∼ Gumbel(1, 1
m) represents the capability level of state i, adjusted for

uncertainty in winning, which we recall is parameterized by the race decisiveness m.17

Here, we see that safety is inversely related to the number of states in the race, and the
enmity level, while it is positively related to both the variance of the true types,
parameterized by μ, and the variance of the noise (since as m decreases, the difference
F(μ) � F(0) shrinks to zero). Note that since states cannot condition on their research
capabilities, all play the same equilibrium safety level.

Now we turn to the disaster risk. This is the expected probability of disaster over the
distribution of typesG(x) who play their BNE strategies. Since all states are playing the
same action, the expected risk of disaster is simply given by 1� s*˘.

Figure 1. The game tree.
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Corollary 1.1. In any distribution of capability levels the expected level of disaster

risk is given by D˘ ¼ max
n
0; 1� μ

2η½FðμÞ�Fð0Þ�
o
.

This value represents the expected risk from a qualitative race to a neutral third party
who cannot query states for their types. This provides a useful benchmark by which we
can compare the level of risk even as states are permitted increased knowledge of their
own or their opponent’s capabilities.

Private Information

In this section, we consider the case in which each state knows its own capability level
but not its rival’s. This situation more closely resembles realistic qualitative races,
which often involve closely-guarded state secrets. Power-seeking states have a strong
incentive to keep their technological capabilities hidden from rivals in order to win the
race, as even proof-of-concept demonstrations could lead to increased competition
(Bimpikis et al. 2019). The Soviet biological weapons program, for example, was
conducted in so-called “closed cities,”which were not printed on most maps and which
were off-limits to even Soviet citizens. In the private information case, each state i can
condition its safety level on its own capability, choosing a strategy sprivate(xi). Before we
establish the level of safety in this scenario, we begin with a lemma showing that
performance, or capability less safety, is always increasing in xi:

Lemma 1. Let ki(xi) = xi � si(xi). In the private information scenario, at any BNE, ki
is strictly increasing in xi.
Now we solve for the equilibrium safety level.

Proposition 2. There exists a unique symmetric Bayesian Nash Equilibrium in pure

strategies. The strategy is given by s*privateðxiÞ ¼ min

�R xi

�∞
FðcÞηdc

FðxiÞη , 1

�
.

Here, we see that states increase their safety levels as capabilities increase. Since
more capable actors are more likely to win the race, knowing they are at the high end of
the distribution, they can condition on this information by trading off additional
performance for a higher level of safety. In addition, as in the private information case,
we see that as enmity level increases, states start putting less efforts into safety. Finally,

as before, the overall disaster risk is given byDprivate¼ 1�Ewinner½s*privateðxiÞ�, whereE½:�
is the expectation over the true distribution of player types. Corollary 2.1 gives formal
expression of the disaster risk.

Corollary 2.1. The disaster risk in the private information scenario is given by

Dprivate¼ 1� 2=μ � R μ
0 min

�R x

�∞
FðcÞηdc

FðxÞη , 1

�
FðxÞdx.
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Public Information

Now we solve for the case in which both states are fully aware of each other’s ca-
pabilities. While states are often incentivized to keep capabilities secret in order to
impede rivals’ progress, in other cases, states may want to demonstrate their capabilities
to deter potential rivals, as in the case of the U.S. and Soviet hydrogen bomb tests in
1952 and 1953, respectively. Alternatively, this corresponds to states of the world in
which espionage techniques make secret-keeping impossible. In this state of the world,
the difference in capabilities determines states’ safety choices and the risk of disaster.
Here, we denote the leader’s capability as x and the laggard’s as y. Denote Δsd x � y
as the variable on which states condition their safety choices. We can then find a unique
pure strategy Nash equilibrium.

Proposition 3. There exists a unique pure strategy Nash equilibrium for the public
information cases for all values of m > 0.

Denote the solution to this system of equations as s*(Δ). Except in the case where
m → ∞, equilibrium strategies do not permit a closed-form solution. In order to give
intuition, then, in the following two corollaries, we show payoff and strategy
equivalence with Armstrong et al. (2016) in the limit.

Corollary 3.1. [Strategy equivalence] As m → ∞, strategies converge to the fol-
lowing expressions:

limm→∞s
*
x Δð Þ ¼ min 1,

Δ
η

� �
, limm→∞s

*
y Δð Þ ¼ 1� ηð Þ �min 1,

Δ
η

� �
:

Corollary 3.2. [Payoff equivalence] As m → ∞, states’ utilities converge to the
following expressions:

limm→∞uxðΔÞ ¼
�
Δ=η Δ=η < 1
1 otherwise

and limm→∞uyðΔÞ ¼
� ð1� ηÞΔ=η Δ=η< 1
1� η otherwise

:

From these limit expressions, we see that safety is positively associated with the
difference between the leader and laggard and, as in the other scenarios, negatively
associated with enmity. Unlike in the private information scenario, in which highly-
capable states always play higher levels of safety, here capable states will cut corners on
safety if their rival is close in capability. If states can observe their rival’s capability,
cutting corners on safety is only rational if a state is close enough in capability such that
doing so will greatly increase the chance a state overtakes its rival. We compute the
associated disaster risk as follows:

Dpublic¼ 1� 2

Z μ

0

Z y

0

h
s*x ðΔÞFðxÞ þ s*y ðΔÞð1� FðxÞÞ

i
gðyÞgðxÞ dx dy (1)
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Information and Risk

We now turn to comparisons of disaster risk under our three information scenarios.18

We begin with a derivation of comparative statics in the model and then present
empirical examples of these forces from real-world qualitative races.

Information and Welfare

Changing information states can make the race more dangerous; we seek to understand
how this interacts with the decisiveness parameter m. We present two primary sets of
results, both illustrated in Figure 2. First, across most parameter values, the expected
disaster risk is increasing with m. We prove strong versions of this statement for the no
information case and private information case and a weaker statement for the public
information case.19

Proposition 4. In the no information and private information scenarios, risk always
increases with decisiveness, unless risk is 0. In the public information scenario, risk
is higher as m → ∞ than as m → 0.

That is, if trading off safety for additional performance does not produce a high
chance of winning the race, states will be reluctant to do so. As decisiveness becomes
arbitrarily large, however, even the smallest additional unit of performance will de-
termine for certain who wins the race, offering states a large incentive to cut corners. An

Figure 2. Disaster risk (μ = 1.44, η = 0.9).
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observable implication of this is that in early stages of development, when progress is
highly uncertain, states are likely to prioritize safe development over winning the race.
In the early stages of nuclear weapons development, for example, and as late as 1942,
U.S., Soviet, and German scientists published major insights on nuclear fission in
publicly-accessible physics journals. Only around 1940, when the prospect of suc-
ceeding in the race became more imminent, did U.S. scientists begin concealing their
results and progressing without checking necessary calculations (Ord 2022).

Second, we want to know how the relative openness of the race interacts with
decisiveness to influence risk. As shown in Figure 2, for much of the parameter space,
the no information scenario is safer than the other two information scenarios. In fact, in
Proposition 5 below, we show that the no information scenario is always at least as safe
as the private information scenario.

The most interesting case, however, is the comparison between the public and
private information scenarios. In quantitative arms race models, better information
about rivals’ capabilities tends to reduce risks (Wittman 2009; Reed 2003). In contrast,
in their study of a qualitative race, Armstrong et al. (2016) find that, given a high degree
of enmity between states, the public information scenario is more risky than the private
information scenario. However, we show that both effects are possible in a qualitative
race. For large values of m and high enmity, we show that indeed public information
produces higher risk than private information, producing an information hazard effect.
However, as m declines, we see in Figure 2 that the public information scenario
becomes safer than the private information scenario. Finally, asm tends to 0, we see that
in both cases, players are unwilling to take any risk and implement at the maximum
safety level. We present this result formally.

Proposition 5. The no information scenario is always safer than the private in-
formation scenario, while the relative safety of the public and private information
scenarios depends on m.

These results are presented in Figure 2, where we see that the riskiest information
scenario changes at m = 6. Two forces drive this result. Note that the decisiveness
parameter m enters into the disaster risk function in two places: the contest success
function and the equilibrium safety choices of the players. To see how these forces
affect risk, consider the drivers of risk whenm→∞. The public information scenario is
riskier than the private information scenario as long as

μ >
ðηþ1Þ3 þ η2

3η
(2)

In the public information case, risk is driven by cases in which the laggard is close
behind the leader in capability, which happens with probabilityG(x) = x/μ. In the private
information case, risk is caused by low-capability winners, which, since there is no
noise in the CSF, occurs precisely when both states have low capabilities, which occurs
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with probability G(x)2 = x2/μ2. Thus, the probability of a high-risk outcome decreases
linearly in μ in the public information scenario but quadratically in μ in the private
information scenario.20 Thus, when m = ∞ and μ is sufficiently large, the public in-
formation case is most dangerous. Now fix μ and consider what happens asm tends to 0.
In both cases, there is an increased probability that the laggard wins, which by itself
increases overall risk. However, states also see a lower expected return to reducing
safety investments, which implies lower risk. Consider what happens to the probability
that i wins as m tends away from +∞. We have

∂
∂m

Pr i winsjxið Þ ¼ mem xj�xiþsi�sjð Þ

1þ em xj�xiþsi�sjð Þ� �2 (3)

In the public information case, xj � xi + si � sj ≈ 0, so ∂Pi/∂m ≈ m/4. Thus, the
probability that a state wins is declining linearly in decisiveness. In the private in-
formation case, however, the expected gap in capabilities between the winner and loser
at m→ ∞ is 1/6μ, so ∂Pi=∂m ≈mem½�6ðηþ2Þ=μðηþ1Þ�=ð1þ em½�6ðηþ2Þ=μðηþ1Þ�Þ2, which note
is close to 0 for m large. Thus, in the public information case, since the leader’s
probability of winning declines rapidly with m, we should expect that state and, in
response, its rival to rapidly increase safety as decisiveness falls. In the private in-
formation scenario, the probability that a given state wins initially changes very little as
decisiveness falls; thus, states will increase their safety strategies much more slowly
than in the public information case. These effects are illustrated in Figure 3. In this
figure, we simulate a race in which μ = 1, η = 0.9. We fix xj = 0.5 and consider what
happens to expected safety when we vary xi. In the public information case, the race is
most dangerous when xi = xj = 0.5. As m falls, both leader and laggard rapidly increase
safety, so the expected safety of the winner rises rapidly, even when xi = xj. In the private
information case, risk is largely driven by competition with risky laggards. When m→
∞, risk is driven entirely by the leader’s safety choice, so safety is constant as long as
xi ≤ xj. As m falls to 5, we see that safety is still largely flat when xi ≤ xj, indicating that
the leader’s efforts are mostly driving safety (since si(xi) is increasing in xi). Since
neither player has as much incentive to change strategies as m falls, the decline in the
expected safety of the winner is not nearly as rapid as in the public information case. As
a result, even if the public information scenario is more risky at high decisiveness, if
decisiveness declines far enough, the private information case may well become more
risky.21

Finally, the no information case is weakly safer than the private information case.
Thus, learning one’s own capability does not increase welfare. In the no information
scenario, just as in cases with low decisiveness, states are quite uncertain about the
returns to their own efforts. Here, the chance of being a laggard is exactly 1/2, so states
are highly uncertain whether cutting corners on safety will benefit or harm them. Since
they know their rivals will also face the same uncertainty, they will be quite unwilling to
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cut corners on safety. Thus, even for very high decisiveness, states are unwilling to take
much risk, so states would be better off if they did not learn their type.

Empirical Illustrations

Using our model, we now examine a series of examples that illustrate the importance of
the above forces in historical technology races. We find that our analysis can explain the
behavior of laggard states in a number of cases, illustrated in Table 1, which displays the
relative level of risk taken on by the laggard in private and public information scenarios
when the gap with a capable technology leader is varied.

Information Scenarios. First, we compare the role of public and private knowledge when
the gap between a capable leader and a laggard in a technology race is believed to be
large. Consider the U.S.-Soviet race for the development of intercontinental ballistic
missiles (ICBMs) in the 1950s. At the time, Soviet leadership attempted to exaggerate
the size of their ICBM arsenal. In October 1957, Premier Nikita Khrushchev declared
Soviet factories were “turning out missiles like sausages” (Ellsberg 2017). The USSR
was reasoning along the lines of the public information scenario: if the US could be
persuaded they were far behind in the race, they would abstain from engaging in a
dangerous arms buildup and accede to Soviet foreign policy demands (Horelick and
Rush 1966). However, their strategy backfired: instead of backing down, the U.S.
engaged in a rapid buildup of ICBM capabilities, testing its first in 1958 and producing

Figure 3. Expected safety of the race winner (μ = 1, η = 1, xj = 0.5).
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over 1000 by 1965 (Nuclear Threat Initiative, 2022). Why? As our model highlights,
the strategic logic is different when capabilities are private. By 1957, the U.S. Air Force
privately estimated that the Soviet Union was far ahead in development, with hundreds
of missiles developed as early as 1959 (Ellsberg 2017). The belief that they were
relatively low on the distribution of capabilities, then, led the U.S. to pursue a risky
development strategy, one which might not have occurred if the Soviet leadership had
backed up their claims regarding their technological prowess (Mathers 1998). As a
consequence, the US and USSR engaged in a dangerous arms buildup. By 1961, when
the U.S. learned that their estimates were mistaken, they had developed 40 missiles,
while the USSR had only 4 (Lawler and Mahan 1961). By 1965, the US had expanded
its production to over 1000 (Nuclear Threat Initiative 2022).

On the other hand, when states know they are behind in the race, they are often
willing to develop safely. Consider the example of the Nuclear NonProliferation Treaty.
That the weapons stockpiles of most nuclear powers are public information shows most
states are willing to publicly reveal their nuclear capabilities in order to be able to
develop safe, peaceful nuclear technology under the treaty in exchange for technology
transfers, rather than engage in a weapons development race that risks strong inter-
national retaliation (Fuhrmann and Lupu 2016). A deviation to a race would be futile,
since the wide gap in the distribution of capabilities is public knowledge. Thus, even
most states that have technical capabilities to build nuclear weapons, such as Argentina
and Brazil, are not willing to run the risk of a race (Narang 2017). Only when enmity is
high enough are some low-capability states, such as North Korea, willing to begin
active development.

Our model predicts that we should see the opposite effect when states are close:
when information is public, states engage in a “race to the bottom” on development,
generating a far higher level of risk than in the private information scenario. The U.S.
government, for example, began the Space Race after the public launch of Sputnik I by
the Soviet Union.22 Prior to the launch, while each state knew the other possessed a
satellite program, the U.S. underestimated Soviet progress, with President Eisenhower
choosing to deprioritize the speed of the U.S.’s own program. Unlike in the ICBM race,
the USSR did publicly demonstrate their technological capabilities. The Soviet launch
of Sputnik I in October 1957 caught U.S. policymakers by surprise, prompting Ei-
senhower to re-prioritize the Vanguard project, which until then had been beset by
delays (Barnhart 2021). The U.S. was a close second, launching its first satellite a mere
4 months later, in January 1958. In contrast, by refusing to conduct public tests of a new

Table 1. Risk in Historical Technology Races.

Gap with Capable Leader

Small Large

Information Scenario Private Low (South African nuclear program) High (ICBM race)
Public High (Space race) Low (Nuclear NPT)
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technology, a state may be able to hide its level of technological prowess to avoid a
costly race with its rivals. Consider the case of South Africa’s nuclear weapons de-
velopment. From 1971 through the dismantling in 1990–1991, South Africa pursued
what Narang (2017) calls a “hidden” development strategy, prioritizing secrecy above
speed or deterrence. Besides risks inherent in the production process, South Africa also
faced risks of international isolation or retaliation should its program be discovered, as
neither superpower wanted it to acquire them (Liberman 2001; Rabinowitz and Miller
2015). While the U.S., suspicious of South Africa’s refusal to accept International
Atomic Energy Association inspections of its nuclear reactors, placed an embargo on
nuclear fuel exports to South Africa, South Africa was able to assemble and then store
its first thermonuclear weapon in 1979 and developed a further 5 by 1990 (Liberman
2001). Unlike the space race, South Africa’s secret development did not prompt further
proliferation by rivals, who did not know how behind they were in development, nor
more than a moderate response by the international community, who did not realize the
scale of South Africa’s technological advance. Indeed, a race was avoided despite a
relatively high degree of enmity between South Africa’s government and the two
superpowers.

Decisiveness. The second source of risk in our model is high decisiveness. Though
quantifying this parameter is difficult, we note that states’ beliefs about m are likely to
be positively correlated with how rapid they anticipate research progress to be. If states
express a belief that research progress will happen quickly or that they are certain about
key technological parameters, it is likely they believe m to be large. By analyzing
variation in actor’s expressions of certainty, then, we can analyze how changes in
decisiveness affect states’ safety choices. For example, as R&D on the first atomic
bomb progressed, U.S. and British politicians and scientists increasingly expressed
certainty that such a weapon could be soon developed. Early in development, there was
considerable uncertainty about the size of the critical mass of uranium and amount of
infrastructure spending required to develop a bomb. In 1939–1940, estimates for the
critical mass ranged from 44 tons to 1 pound of uranium-235, indicating high un-
certainty about the timeline required to produce sufficient enriched uranium (Ord
2022). In this period, it could be said that decisiveness was low: it was unclear by how
much a marginal investment in capabilities would improve performance in the race. At
this time, scientists and officials seemed relatively unconcerned about sacrificing safety
for an advantage in the arms race, as U.S., German, and Soviet scientists continued to
publish key results on nuclear fission in physics journals (Ord 2022). By 1942, the U.S.
and U.K. governments came to believe that decisiveness was considerably higher. For
one, uncertainty surrounding estimates for the critical mass had declined to such a
degree that the U.S. was able to accurately forecast the remaining time to the de-
velopment of uranium and plutonium bombs (Ord 2022). As uncertainty in the
possibility of success decreased, the U.S. drastically increased funding of capabilities:
the Manhattan Project would end up totalling 0.4 percent of U.S. GDP by 1944.
Likewise, U.S. funding on safety relative to performance began to decrease, as it
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pressed forward with the Trinity test despite Teller’s fears that it could ignite Earth’s
atmosphere (Ord 2020).

Multiple Tests, Varying Enmity, and Varying Regime Type

Until now, we have made a number of simplifying assumptions: only the winner can
implement the technology, enmity is fixed, and regime type is symmetric. In this
section, we relax these assumptions to observe their effects on risk.

Multiple Tests and Overall Risk

First, we analyze a game in which both states contribute to overall safety. Real-world
qualitative races often proceed as a series of steps. During the Space Race, for example,
the U.S. conducted a failed satellite test in December 1957 before succeeding 2 months
later. If each test carries some risk, then the choices of both the winner and loser of the
technology competition determine the overall risk level. This generalization raises
important theoretical questions: (1) How does the likely winner’s safety investment
change now that her optimal strategy depends on the likely loser’s safety investments?
and (2) How does the structure of the safety provision burden affect states’ incentive to
win the race and the overall level of risk?We explore these questions in each of the three
information contexts of our baseline specification. Now, let the winner contribute a
fraction γ 2 [0.5, 1] to overall safety, while the loser contributes (1 � γ).23 In our base
model, γ = 1 and only the winner conducts a risky test of the technology. However, as γ
→ 0.5, the eventual loser of the race approaches the leader’s level of contribution to
safety. In each state’s utility function, then, the winner’s expected payoff is multiplied
by bsi, where

bsi ¼ γsi þ ð1� γÞsj
As before, we solve the model in all three information scenarios and present the

results as propositions. In the no information case, the symmetric equilibrium dictates
that both states exert the same level of safety efforts as in the base model when γ = 1.
When the competition loser’s safety efforts–or lack thereof–also affects disaster risk,
we find that the equilibrium safety efforts unambiguously decreases.

Proposition 6. In the no information case, the unique equilibrium level of safety
efforts in a symmetric BNE of pure strategies is given by:

s*˘ ¼ min

�
1,

μ½γþ ð1� γÞð1� ηÞ�
2η½FðμÞ � Fð0Þ�

�

The expected level of disaster risk is then
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D˘ ¼ max

�
0; 1� μ½γþ ð1� γÞð1� ηÞ�

2η½FðμÞ � Fð0Þ�
�

The less safety is determined exclusively by the winner, the more the states are
willing to sacrifice safety to increase the chance of winning the race. This is due to a
public-good effect. As the fraction of the benefits of a given state’s safety decrease
relative to the cost, it is less willing to invest in safety over performance. We see that the
amount by which the safety efforts decrease is linear in γ.

Turning to the private information scenario, states are aware of their endowed
capability and how rare it is compared to the general population, while still unaware of
the opponent’s capabilities. In this case, the states condition safety investment strategies
on their capabilities. First, we establish the equivalent of Lemma 1 for γ < 1.

Lemma 2. In the private information scenario when γ < 1, ki is always strictly
increasing in xi.
Then Proposition 7 characterizes the equilibrium safety investments and disaster

risk.24

Proposition 7. In the private information case, the equilibrium level of safety efforts
in a symmetric BNE of pure strategies is unique up to a set x and is given by:

s*private xið Þ ¼ min 1,

Z xi

x

V cð Þ η
γ� 1�ηð Þ 1�γð Þdc

V xið Þ η
γ� 1�ηð Þ 1�γð Þ

8>><
>>:

9>>=
>>;

where V xið Þ ¼ 1� ηð Þ 1� γð Þ þ γ� 1� ηð Þ 1� γð Þ½ � � F xið Þ
The disaster risk is given by:

Dprivate ¼ 1� 2

μ
�
Z μ

0

min 1,

Z x

x

V cð Þ η
γ� 1�ηð Þ 1�γð Þdc

V xð Þ η
γ� 1�ηð Þ 1�γð Þ

8>><
>>:

9>>=
>>; � γFðxÞ þ 1� γð Þ 1� FðxÞð Þ½ �dx

Although the expression is too complicated to elicit general intuition from, we can
get insight into the effect of γ on the equilibrium effort when enmity levels are extreme.
As η→ 0, and the states do not mind whether they or their opponent successfully builds
the technology, Proposition 7 dictates that s*private¼ 1. When η = 1, and the states are

indifferent between disaster and victory for their adversaries, s*privateðxÞ ¼
R

F cð Þ1γdc
FðxÞ 1γ

.

Remember from Proposition 2 that when η = 1, the equilibrium safety effort level wasR
FðcÞdc
FðxÞ . As γ falls, more equilibrium safety comes from the loser. This produces a

public-good effect, as γ is the fraction of a state’s safety provision that it internalizes, and
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1 � γ is the fraction that goes to the other state if it wins. As γ decreases, a state
internalizes less of the benefit of its own safety level, causing it to reduce provision.25 In
addition, when enmity starts to tend away from 1, low capability players put more effort
into safety, since even the loser’s safety choice matters in her utility function.26 This
produces an additional selection effect; that is, compared to the case when γ = 1,
moderately high capability players are now the most risky. Since they are more likely to
win, this increases overall disaster risk. In sum, in an environment where the enmity
level is high, having safety risk be dispersed between the winner and the loser makes
states put less effort into safety.

Due to the complexity of states’ utility functions in the public information case, we
instead report the results of numerical simulations of equilibria to compare to the no
information and private information cases. Figure 4 presents the disaster risk for γ 2
[0.5, 1] for the same parameter values we used in simulations in Figure 2 (η = 0.9, μ =
1.44) under high (m = 10) and moderate (m = 5) values of decisiveness. We see that, as
in the no information and private information cases, disaster risk is monotonically
decreasing in γ in the public information case as well. Similar to the other cases, the
same public-good and selection effects apply. As γ is lowered, the loser contributes
more to overall risk. Since the loser is more likely to have lower capabilities than the
winner, and thus also to invest less in safety in order to win, this serves to increase risk.
Likewise, as other players contribute less to overall safety, each faces a temptation to
shirk in their safety investments. Reduced investments in safety by others lowers the
expected return on safety, even for actors that are likely to win the race.

Figure 4. Varying safety contributions of the winner.
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Risk and the Marginal Value of Winning

Until now, we have held fixed the η parameter, which we have termed enmity and
characterizes the opportunity cost of one’s rival winning the race. Enmity can be high
for one of two reasons. First, enmity can be high because states are existing rivals.27

When states are more intense rivals, they are more willing to cut corners to develop a
new technology. This is one of the reasons the U.S. government ignored some of the
concerns of the director of the Los Alamos Laboratory, J. Robert Oppenheimer, over the
development of the atomic bomb: they feared Germany winning the race.28 Pre-
sumably, the U.S. would not have taken on the same level of risk had the U.K. been
developing a nuclear bomb instead. Second, enmity can be high because losing the race
may quite harmful to one’s security only if the increase in capability enabled by the
technology is relatively large. States developing a next-generation fighter jet or tank are
unlikely to engage in high levels of corner cutting on safety, even competing against a
bitter rival, as the expected value of losing the race is only marginally smaller than that
of winning. In this case, we expect the η parameter to be relatively low. Our model
captures both of these intuitions. In all three information scenarios, states choose
weakly lower safety levels when the level of enmity between them is higher. Results are
presented for the public information case in Figure 5 for high and low values of
decisiveness m and of γ. We see that higher values of m and lower values of γ increase
the concavity of the curve. That is, in highly decisive races or races in which both the

Figure 5. Effects of enmity under public information (μ = 0.72).
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winner and loser share approximately equal safety burdens, a race can quickly become
maximally dangerous even when enmity is still low. In addition, we see an interaction
effect: for low γ and highm, enmity is more harmful than if only one of these conditions
are met.29

Regime Type and Risk

Another parameter we have kept fixed is our value of disaster, which recall is nor-
malized to 0. However, it is likely that the relative value of a disaster depends on a
state’s regime type. In military conflict, for example, democracies tend to exhibit
greater care to reduce casualties than autocracies (Gartzke 2001). Likewise, in tech-
nology races, we might expect democracies to value minimizing the chance of a disaster
more highly than autocracies. To formalize this intuition, let a disaster reduce the value
of the race outcome relative to winning by a factor of di, which is drawn to a distribution
di ∼iid H(d) that is independent of a state’s level of capabilities. Therefore, we can view
democratic states as having lower values of di.

30 As expected, we find that if races are
more likely among autocracies, as parameterized by a higher expected disaster value,
risk increases in all information scenarios. Importantly, this is driven not only by races
between autocracies but also by races between democracies and autocracies: in re-
sponse to an autocratic rival’s corner cutting on safety, a democracy will choose a lower
safety level than it would when racing against another democracy. The following
proposition formalizes this result:

Proposition 8. In all information scenarios, the expected safety of the race weakly
increases as the average cost of a disaster rises.

Conclusion

In the introduction, we suggested that qualitative technology races present novel
sources of risk that affect states’ national security. Given the rate of progress on a
number of powerful, risky military technologies such as advanced artificial intelligence
(Brundage et al. 2018; Dafoe 2017) and enhanced biological agents (Mukunda et al.
2009; Stern 2002), such risks will become increasingly important factors in states’
decision-making, even as they remain understudied in the international relations lit-
erature. Therefore, we develop a model to analyze the strategic forces influencing such
risk. We find that the level of risk depends on states’ knowledge about each others’
capabilities as well as the decisiveness of the race. When races are less decisive, as is
likely during early stages of research or in novel fields, public knowledge is beneficial,
preventing weak laggards from cutting corners on safety. However, at high levels of
decisiveness, when the race is in its final stages or research is in a well-established field,
private knowledge is safer, preventing a race to the bottom. Finally, as the eventual loser
is allowed to conduct more powerful tests or as enmity between players rises, overall
safety falls.
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A clearer understanding of the strategic forces influencing states’ technology de-
velopment can inform policymakers seeking to reduce the risk of an accident. First, our
model implies that disclosure policies are important for novel technologies. As we have
seen, public revelation of capabilities can produce a dangerous competition in which
states steeply cut corners on safety to win. On the other hand, keeping capabilities
private can induce risky behavior by states who believe they are lagging behind, as the
U.S. did during the ICBM race. In this case, if the Soviet Union had credibly shared its
capabilities, it may have prevented a dangerous race. Taken together, these two imply
that there is room for policies, such as agreements to share technology or provide
transfers to identify incapable laggards and prevent them from racing (Stafford and
Trager 2022). Second, policymakers should be clear-eyed about to what extent cutting
corners on safety will produce additional gains in the race. As we have seen, public
knowledge of capabilities and high levels of safety are optimal when decisiveness is
low. Thus, giving in to the hype about rapid, certain progress of a new technology may
unnecessarily increase risk if such hype is not well-founded (Smith 2020). Rapid
improvement in machine language-processing via so-called large language models, for
example, has produced media hype about the imminent arrival of human-level or
otherwise transformative artificial intelligence (Bender and Koller 2020), despite
experts believing that such progress remains decades away (Zhang et al. 2022).

We believe the findings of our model can admit a number of extensions and suggest
directions for future research. First, we assume that the information partitions are given
exogenously. In many scenarios, however, states may choose to share information or
close off development to increase their chances of winning a race. As in conventional
arms races, states can signal their military superiority with a public display of weapons
capability in an effort to deter would-be attackers. On the flip side, states may have an
incentive to engage in espionage to uncover the capabilities of their rivals or gain access
to their knowledge base. Soviet spying during the race for the atomic bomb likely
accelerated their program by a year or two (Ord 2022). Studying a model in which states
are allowed to disclose information voluntarily or spy on rivals may help elucidate how
different information scenarios arise. Second, our model considers decisiveness to be
exogenous and common knowledge. Instead, we might expect it to vary over time; as
we have shown, the race for the atomic bomb became more decisive–and thus far more
risky–as research progressed. Extending the model to a dynamic game in which de-
cisiveness varies over the course of the race might yield insights about when races are
most risky. Alternatively, we might extend the model such that states have private
information about decisiveness. If a state believes its rival has a high value of deci-
siveness, it might be willing to cut corners on safety even if the state itself believes
decisiveness to be low. Third, it may be important to analyze the effect of information in
a dynamic context where agreements are possible. Here, information plays a different
role, sometimes allowing states to increase general welfare by conditioning their
strategies on each other’s behavior (Stafford and Trager 2022). Fourth, to focus at-
tention on states’ decisions to allocate their R&D budget on capabilities and safety, we
have assumed budgets and therefore entry into the race are exogenous. Instead, we
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might consider a model in which states face a cost function and choose how much to
spend on capabilities and safety, in which the optimal solution may be to simply stay
out of the race. After all, the majority of states have never invested in a nuclear weapons
program, and such a model would help elucidate the reasons behind this empirical
regularity.

In this paper, we have sought to unite various strands of literature–on qualitative
races and on risks from various technologies such as nuclear weapons and bio-
weapons–into a unified model. We hope to provide a framework upon which
scholars can build as they seek to understand the strategic effects of and risks from
emerging technologies. In particular, our model contributes to understanding the
role of information and uncertainty in qualitative arms races, showing that the
decisiveness of the race can change the qualitative and quantitative effects of
information. We hope these insights are not only theoretically insightful but can be
used to improve policy decisions so that advanced technologies are developed for
the benefit of all.
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Notes

1. See Huntington (1958) for a related distinction between qualitative and quantitative arms
races.

2. Ellsberg (2017) notes that the Manhattan Project continued to take on unnecessary risks even
after it became apparent that Germany would lose the war.

3. Both problems are evident in current AI systems. Because are often trained on datasets that
reflect human biases, current AI models often produce racist or otherwise biased outputs by
default (Weidinger et al. 2021). The increasing cost of training state-of-the-art systems serves
to “de-democratize” AI progress by shifting frontier research from universities to a handful
of technology firms (Ahmed and Wahed 2020).

4. For a comprehensive review of the literature on arms races, see Glaser (2000).
5. A related literature studies uncertainty over the utility functions over the value of prizes in

arms races. Relevant papers include Jervis (1976), Kydd (1997), and Fearon (2011).
6. That is, a costly peace (Powell 1993).
7. Note that early studies of qualitative races failed to fully appreciate this point. Focusing on

relatively small innovations, Huntington (1958) argues that the main tradeoff faced by states
is whether the development of qualitatively new weapons is worth a more rapid depreciation
of current weapon stocks, while Intriligator and Brito (1984) find that qualitative races
marginally increase the probability of war initiation relative to quantitative races.

8. However, it must be noted that even such a draconian safety measure might not fully
eliminate risk. A recent study of BSL-3 labs (the highest level of security in the U.S.) found a
risk of about 1 accidental infection of a dangerous pathogen for every 100 full-time person-
years of work (Lipsitch and Inglesby 2014).

9. We consider this a plausible simplifying assumption. Though states are able to increase the
share of expenditures devoted to a particular technology, qualitative races are generally brief
enough that they cannot greatly increase their military budget in the same time period (Ord
2022).

10. Though we conceive of the benefits of a new technology as economic or military, qualitative
races may also accrue prestige benefits to the winner (Barnhart 2021).

11. Certainly, igniting the atmosphere would be equally bad for all states!
12. In contrast, Bas and Coe (2016) model research success as independent of the level of R&D

effort.
13. Though Conrad and Spaniel (2021) note that a logistic CSF does not display decreasing

returns to scale, the importance of winning a qualitative race to a state is likely to mean that in
principle, such a constraint will not strongly influence state behavior. Consider that from
1964 to 1966, the U.S. was willing to spend over 4 percent of its federal budget on NASA to
win the space race against the Soviet Union.

14. Note that this assumption allows us to nest our model as a more general case of the model in
Armstrong et al. (2016), since contests of this form converge uniformly to all-pay auctions
(Jia et al. 2013; Che and Gale 2000).

15. In models of conflict, m represents the offensive advantage (Fearon 2018).
16. Proofs of all propositions are presented in Online Appendix A.
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17. This is a common technique for finding closed-form expressions for equilibria in differ-
ence-form contests (Ryvkin and Drugov 2020), analogous to using Gumbel-distributed noise
to characterize choice probabilities in logit regressions (McFadden 1974).

18. For the public information case, we a modified version of the computational solution
implemented by Muller et al. (2021).

19. Though our statement for public information is relatively weaker, we note that in simulations
of “reasonable” parameter values, such as those simulated in Figure 2. risk sharply increases
with decisiveness in the public information case as well, only mildly decreasing as m in-
creases without bound above 20.

20. Note that a larger μ implies that relative capability is likely more significant than relative
corner-cutting in determining the winner of the contest.

21. In Online Appendix B, we plot each gap in risk between information states.
22. Though the Space Race likely entailed a lower overall level of risk than many other

technology races, tragedies such as the Challenger disaster show that technology races for
space exploration are not without risk.

23. This is equivalent to the weighted sum provision function in public goods problems
(Buchholz and Sandler 2021).

24. Unlike in Proposition 2, s*privateðxiÞ is not an equilibrium for all xi 2 supp(C). In Online
Appendix A, we establish the uniqueness of x up to (m, η, μ, γ) and the behavior of xi < x.

25. In the context of climate policy, Sandler (1998) notes that states have achieved a far higher
reduction in sulfur emissions than in nitrogen oxide emissions since 1985 due to the fact that
γ is far higher in the former case.

26. Indeed, for low enough η, γ, low capability players deviate to the corner solution s*(x) = 1.
For example, for γ < 1 � 2η

2 �η , all xi ≤ E½xi� ¼ μ
2 play s*(x) = 1.

27. This is consistent with common approaches to rivalry in international relations theory. See,
for instance, Hensel et al. (2000) and Goertz and Diehl (1995).

28. Ord (2020).
29. Results for the no information and private information cases are similar and are presented in

Online Appendix B.
30. Although there is a positive correlation between income and democracy (see e.g. Treisman

(2020)), this may not hold conditional on states being in a technology race.
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